TenCate Asphalt Interlayers <u>Aplicaciones en Carpetas Asfálticas</u>

Selección y Diseño con Geocompuestos para Rehabilitación de Carpetas Asfálticas

Juan Pablo Broissin López
Engineering Business Manager LATAM

GEOSYNTHETICS

Juan Pablo Broissin L.
EBM LATAM

- TenCate Geosynthetics
- GeotechTips Diseño Mezclas Asfálticas
- Paving Fabric Interlayer as a Pavement Moisteure Pavement
- (Paper Mark L. Marienfeld and Thomas L. Baker, Amoco Fabrics and Fibers Company)
- FHWA 2008 Geosynthetics Overlays
- FHWA Distress Types Manual

Geosintético que se instala a nivel de la superficie de rodamiento en estructuras de pavimento.

Pavimento flexible

Juan Pabio Broissin L. EBM LATAM

Pavimento rígido

Pavimentos Rígidos

Losa de Concreto

Base

Subrasante

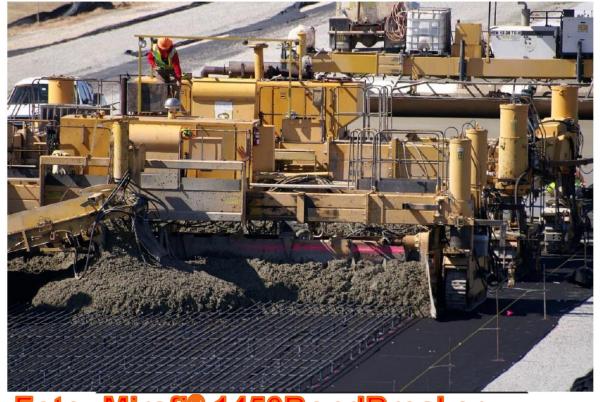
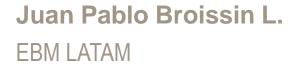
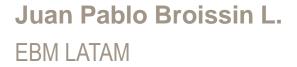



Foto: Mirafi® 1450BondBreaker

Pavimentos Flexibles

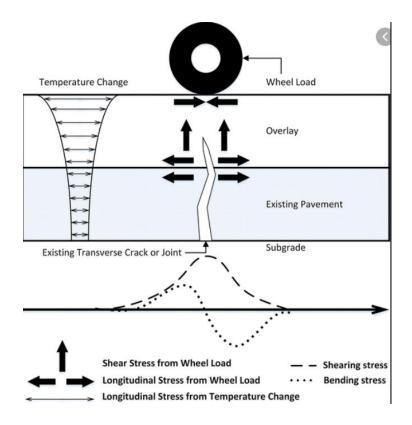
Base Sub-base Subrasante

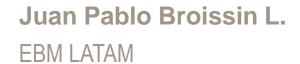
Foto: Mirafi® MPV500



Definición – Geotechtips – RAMCODES – Diseño de Mezclas Asfálticas

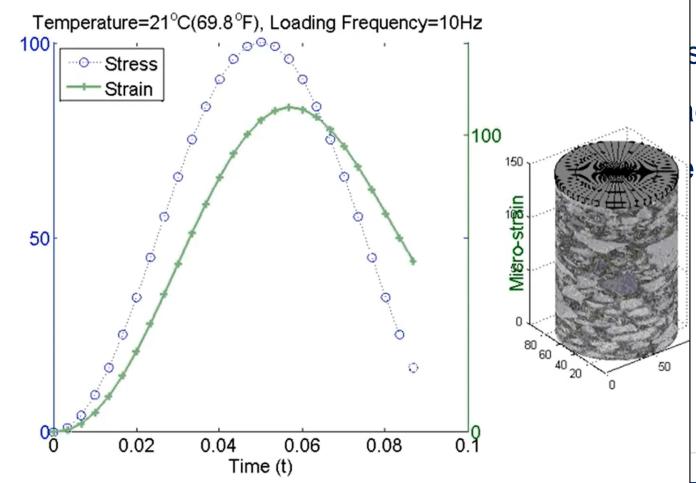
Dosificación de Materia Prima (agregado pétro, cemento asfáltico, aditivos, etc) que cumpla con propiedades volumétricas, mecánicas e hidráulicas requeridas para la especificación.



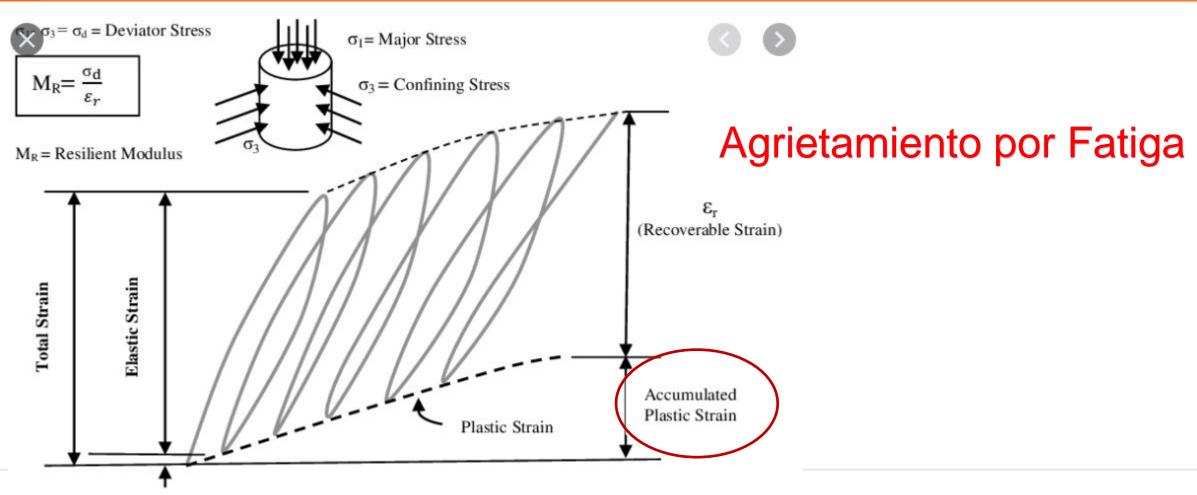

Importancia de Diseño de Mezlcas Asfálticas

GEOSYNTHETICS

- Resistente al fenómeno de fatiga
- Resistente a las deformaciones plásticas
- Resistente al da
 ño por humedad



REF: Nithin



 El módulo dir parte real, la representa el (Huang, 1993)

s partes; la ginaria que viscosa),

Plastic Strain Juan Pablo Broissin L.

Continua (HMA)	Discontinua (SMA) Abierta (OGFC)
CAUSAS	EFECTOS
Exceso de asfalto en la mezcla	Ondulaciones, ahuellamientos y afloramiento o exudación.
Exceso de arena de tamaño medio mezcla	en la Baja resistencia durante la compactación y posteriormente, durante un cierto tiempo; dificultad para la compactación.
Agregado redondeado sin, o con p superfícies trituradas	ocas, Ahuellamiento y canalización.

Condiciones Presentes en un ACC

GeotechTips – Diseño de Mezclas Asfálticas

GEOSYNTHETICS

NO EXISTE UNA MEZCLA REINA

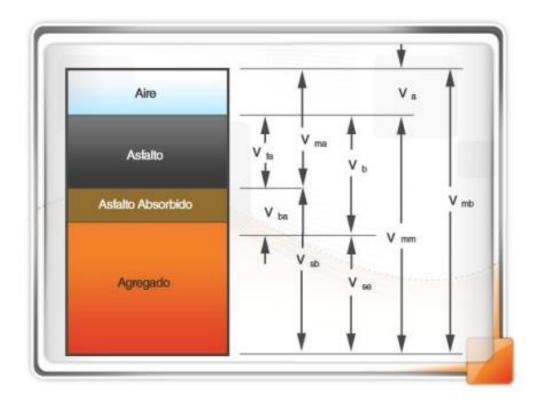
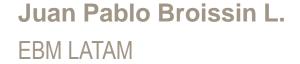
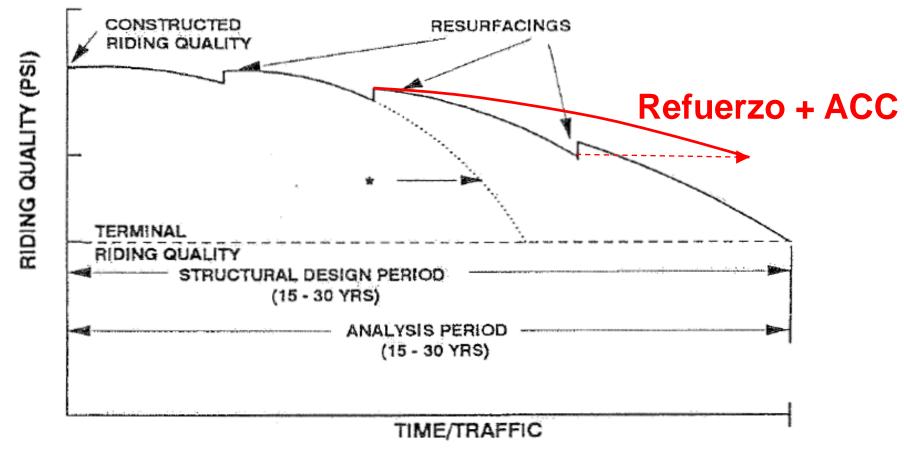



Gráfico IV. 23. Componentes del diagrama de compactación de una HMA.

- Se necesita un sistema que retarde la reflexión de grieta
- Reducir la severidad de la grieta una vez que suceda
- Proveer otra solución como barrera de humedad o reducción de espesor

La vida de servicio (AASHTO 93) se logra solo si mantienes la estructura de pavimento...justo como tu auto. Lo tienes que mantener.


Diseño Original = 20 años (AASHTO93)

Vida de Servicio con un Drenaje Pobre = 16 años

Vida de Servicio con Grietas = 14 años

GEOSYNTHETICS

Si la superficie de rodamiento no se mantiene y Juan Pablo Brois: si hay agua esto provoca deterioro inminente

EBM LATAM

Solución 1: Usa más asfalto

▲ Costo

▲ Elevación – Señalización

Elevación - Seguridad

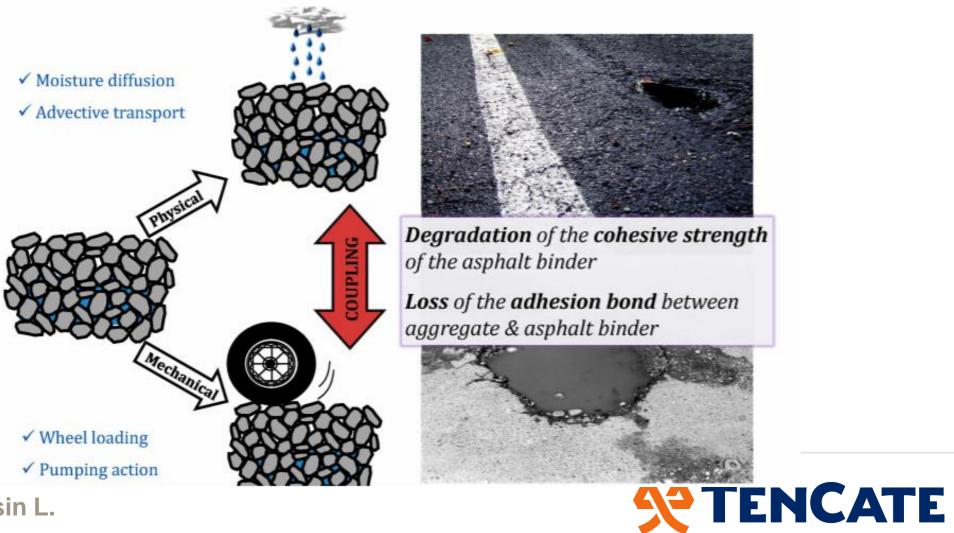
Solución 2 : Pavimentar frecuentemente – gastas más.

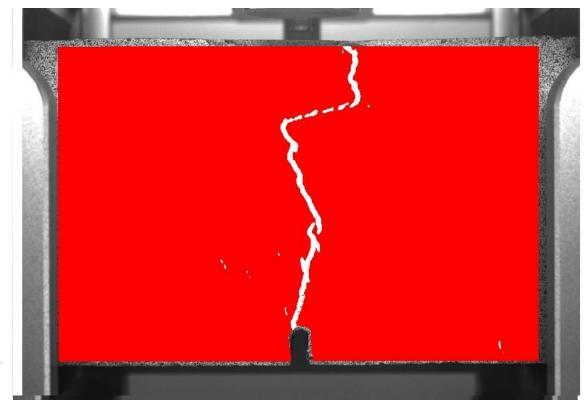
Solución 3: La MEJOR Es usar un geosintético para ACC

▲ Barrera de Humedad

▲ Reflexión de Grietas

▲ Mejoramiento de Vida de Servicio





Barrera de Humedad

GEOSYNTHETICS

Las grietas suceden antes de verlas! (ref. NCSU 4 Pt Beam Tests)

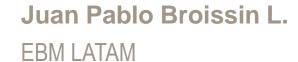
GEOSYNTHETICS

Juan Pablo B EBM LATAM

Geotextil Planchado TenCate MPV600

Barrera de Humedad

GEOSYNTHETICS

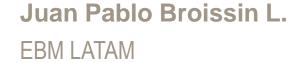


Pruebas en Laboratorio

- Bushey, 1976 (13)
- Guram, 1983 (14)
- Smith, 1984 (15)
- Lancaster, 1994 (6)
- Baker, 1997 (16)

Pruebas en Campo

- Pourkhosrow, 1985 (18)
- Button, 1989 (19)
- Sutherland and Phillips, 1990 (20)
- Phillips, 1993 (21)
- Rahman et al., 1996 (3)
- Al-Qadi, 1997 (22)



El sistema de Geotextil Planchado es ampliamente reconocido por extender la vida útil de la rehabilitaciónón de ACC.

Caltrans ha realizado una extensa investigación sobre esto.

Basado en la evaluación de numerosos sitios de prueba, sus hallazgos indican que el uso de geosintéticos para repavimentación (ej. MPV600) puede proporcionar una vida útil prolonga a equivalente a colocar 30 mm (1,2 pulgadas) adicionales de espesor de recubrimiento de concreto asfáltico.

GEOSYNTHETICS

La mayor preocupación con los sistemas para barrera de húmedad con geosintéticos es que el geosintético se instale con suficiente ligante asfáltico para volverse impermeable, lo cual es esencial para el desempeño de los sistemas de pavimento.

Juan Pablo Broissin L.EBM LATAM

Producto Ideal

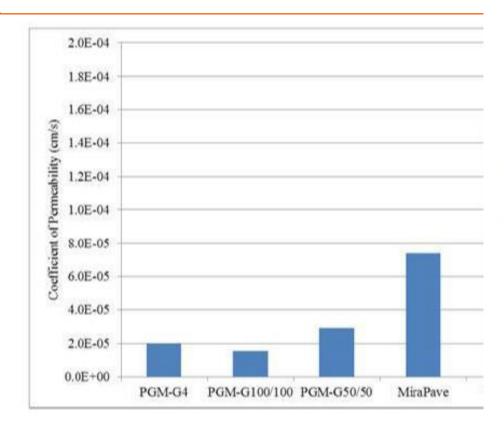


Figure 2.10 Permeability testing results

Juan Pablo Broissin L.

EBM LATAM

TENCATE GEOSYNTHETICS
Americas

Mirafi® MPV600

Mirafi® MPV600 is a heat-set polypropylene nonwoven geotextile specifically designed for asphalt overlay applications. Mirafi® MPV600 is inert to biological degradation and resistant to naturally encountered chemicals, alkalis, and acids.

TenCate Geosynthetics Americas Laboratories are accredited by Geosynthetic Accreditation Institute – Laboratory Accreditation Program (GAI-LAP). NTPEP Listed

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value
Grab Tensile Strength	ASTM D4632	lbs (N)	125 (556)
Grab Tensile Elongation	ASTM D4632	%	50
Mass/Unit Area	ASTM D5261	oz/yd² (g/m²)	4.6 (156)
	1.0		Minimum Test Value
Asphalt Retention	ASTM D6140	gal/yd2 (l/m2)	> 0.22 (1.0)
Melting Point ¹	ASTM D276	F° (C°)	325 (163)
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	70

Based on Peak Temperature results from TRI.

Physical Properties	Unit	Typical Value
Roll Width	ft (m)	12.5 (3.8)
Roll Length	ft (m)	360 (110)
Roll Area	yd ² (m ²)	500 (418)
Estimated Roll Weight	lbs (kg)	169 (77)

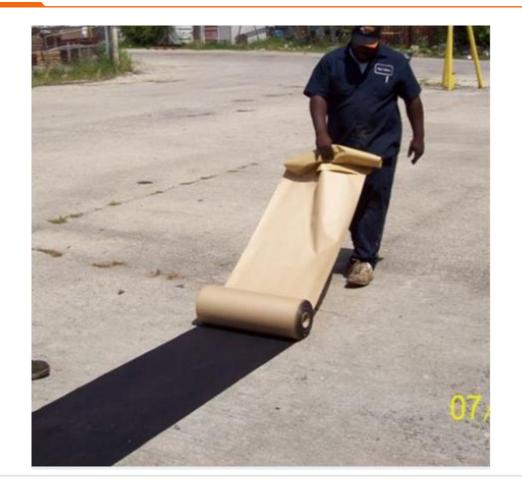
Caso de Estudio

Carretera Chihuahua

Proyecto 2014 Carretera Chihuahua

Miratak® Grietas Longitudinales o Transversales

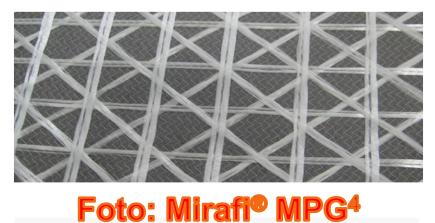
GEOSYNTHETICS



Aplicaciones en Infraestructura

GEOSYNTHETICS

Reflexión de Grietas



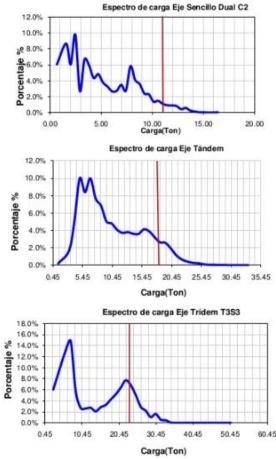
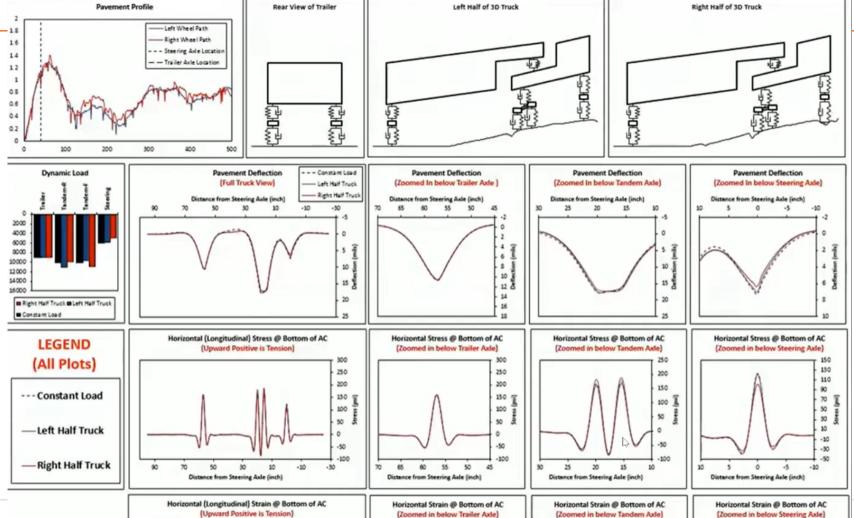


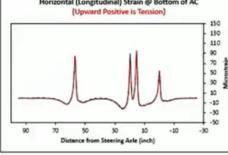
Foto: Mirafi® MPM

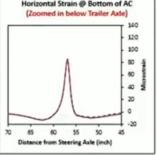
Espectros de Carga

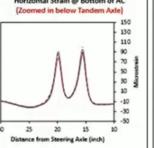
GEOSYNTHETICS

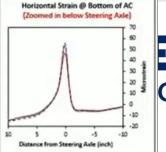
Juan Pablo Broissin L.


EBM LATAM

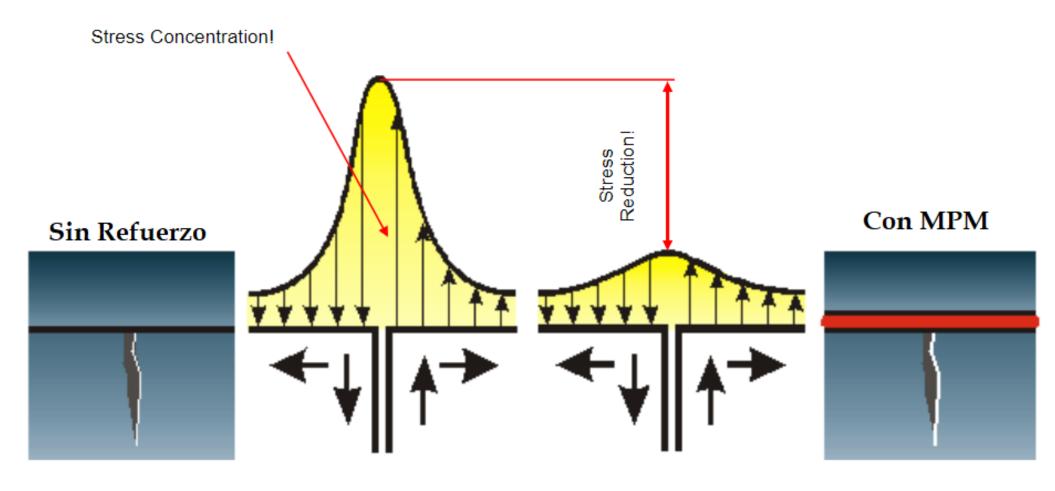


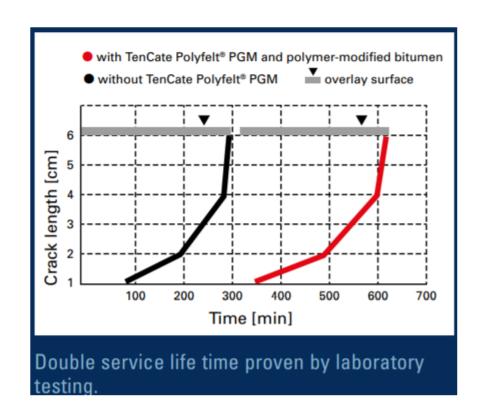

Deflexiones en el Pavimento

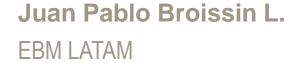

GEOSYNTHETICS



Juan Pabl EBM LATAM



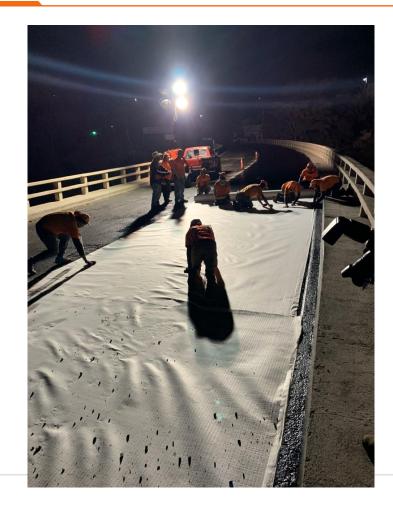




- Brindar "alivio" a las Tensiones .- Las tensiones generadas por la grieta son absorbidas por el geocompuesto antes de crearse en el asfalto.
- Resistencia a la Tensión .- Si ya existe grieta un alto módulo a la tensión resiste el esfuerzo a tensión.

Aplicación de Geocompuesto TenCate MPG⁴

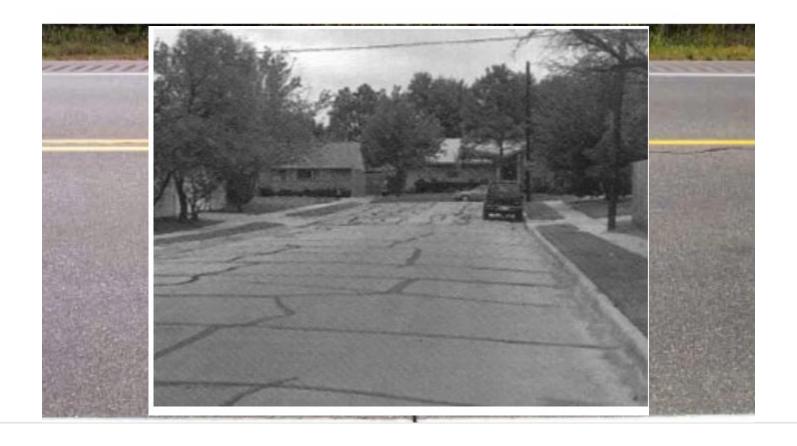
GEOSYNTHETICS



Instalación TenCate MPG⁴

GEOSYNTHETICS

Juan Pablo Broissin L.EBM LATAM



Monitoreo en Zonas Críticas

GEOSYNTHETICS

GEOSYNTHETICS

Levantamiento Fotográfico de Alta Definición GEOSYNTHETICS Georeferenciado y Odometrado.

Cortesía: Rodrigo Rubio

Código de Falla por Estación

Procesamiento de Imágenes

GF	OS	V٨	ITL	IFT	ICS
OL	\mathbf{O}	111			

ID	estacion (km)		cod_falla	nombre_falla	gravedad
1	262.800		FPC	Piel de cocodrilo	Severo
2	262.795	0.005	FPC	Piel de cocodrilo	Severo
3	262.790	0.005	FPC	Piel de cocodrilo	Severo
4	262.769	0.021	FPC	Piel de cocodrilo	Severo
5	262.764	0.005	FPC	Piel de cocodrilo	Severo
6	262.759	0.005	FPC	Piel de cocodrilo	Severo
7	262.724	0.035	FPC	Piel de cocodrilo	Severo
8	262.719	0.005	FPC	Piel de cocodrilo	Severo
9	262.709	0.010	FPC	Piel de cocodrilo	Severo
10	262.653	0.056	FPC	Piel de cocodrilo	Severo
11	262.643	0.010	FPC	Piel de cocodrilo	Severo
12	262.608	0.035	PUL	Pulimiento de agregados	Moderado
13	262.582	0.026	FPC	Piel de cocodrilo	Severo
14	262.562	0.020	HUE	Huecos	Moderado
15	262.512	0.050	PUL	Pulimiento de agregados	Moderado
16	262.491	0.021	FPC	Piel de cocodrilo	Moderado
17	262.466	0.025	FPC	Piel de cocodrilo	Moderado
18	262.461	0.005	FPC	Piel de cocodrilo	Moderado

Experience in the property of the control of the co

Cortesía: Rodrigo Rubio

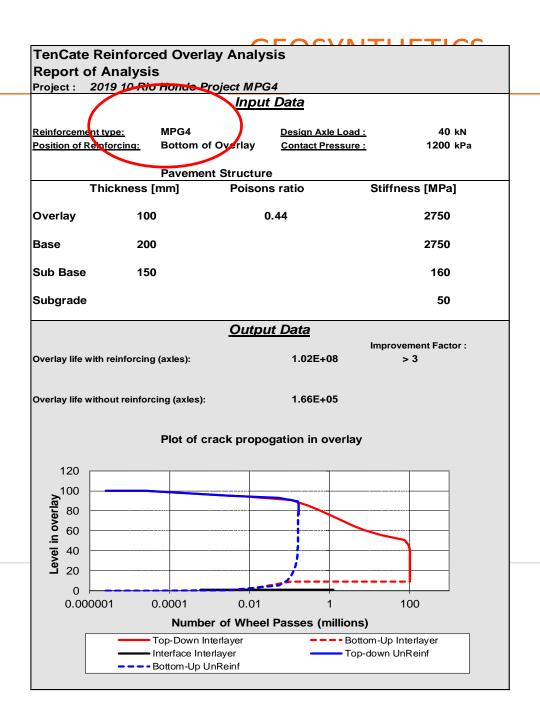
Juan Pablo Broissin L.

EBM LATAM

Grados de Deterioro

GEOSYNTHETICS

Guía Reflexión de Grieta


GEOSYNTHETICS

Reflective Cracking Index

RCI	Tipos do Crioto	Recommended Interlayer Type			
RCI	Tipos de Grieta	Tráfico Liviano	Tráfico Elevado		
81 – 100 Paving Seam Block Cracking Longitudinal Cracking 61 – 80 Transverse Cracking		MPV 400 MPV 500	MPM30 MPV 600 MPV 700		
		MPM 30 MPV 600 MPV 700	MPM 50 MPV 700		
1 41-60 9 1		MPM 50 MPG4	MPG4 MPG100		
21 – 40	PCC Load Transfr < 80 PCC Load Transfr > 60	MPG4 MPG100	MPG100 MTK		
0 - 20	PCC Load Transfr < 60 Thermal Cracking Lane Widening	MTK MPG100	MPG100 & Saw & Seal MTK & Saw & Seal		

Análisis para Reflexión de Grietas

- Tipo de Capa & Espesor
- Propiedades por Capa
- Cargas
- Tipo de Grieta & Producto

Incremento de Vida de Servicio Reducción de Espesor Diseño con Geocompuestos

Herramientas de Análisis

ME Determinar la Capa Crítica:

- Tipo de Capa & Espesor
- Caracteristicas de la Capa
- Cargas

Juan Pablo Broissin L.

EBM LATAM

Pavement Situation At Start of Phase 1 of 1

Method: Distinct Phase Calculation Without Adjustment For Incremental Damage

Design Name: [Not Provided]

[No Description Provided]

Detailed view for axle type: 80 kN Axle, Dual 750 kPa, 350 mm Spacing

Total Capacity for All Phases is 25.92 million

Applied Cumulative axles of this type at phase end is 26.28 million

Critical layer for this phase and axle: Layer 2 Phase starts in year 0 and ends in year 17.75

Note: Damages & critical parameters shown are for this axle type only.

Thickness = 150 Millimetres; Continuously Graded Asphalt Stiffness = 2750 MPa; Poisson = 0.4; Criterion: Asphalt Institute AC Fatigue None Max. Horizontal Tensile Strain: 36.2 Microstrain Position: Load Centrelline/Bottom of Layer Axle Capacity: >100 million (Effective: >100 million) Cum. Damage, Phase Start to End: < 0.01 to 0.05

Thickness = 150 Millimetres; Black Base Stiffness = 2750 MPa; Poisson = 0.4; Criterion: Asphalt Institute AC Fatigue Max. Horizontal Tensile Strain: 91.2 Microstrain
Position: Between Loads/Bottom of Layer
Axle Capacity: 25.92 million (Effective: 25.92 million)
Cum. Damage, Phase Start to End: < 0.01 to > 1.0

Thickness = 150 Millimetres; Sandy Silt with Gravel Stiffness = 200 MPa; Poisson = 0.35; Criterion: Granular Materials CatB Cohesion = 27.7 kPa; Angle of Friction = 38.5 Shear Safety Factor: 3.43
Position: Between Loads/Middle of Layer
Axle Capacity: >100 million (Effective: >100 million)
Cum. Damage, Phase Start to End: < 0.01 to 0.03

Thickness = 150 Millimetres; Sandy Lava Silt with Gravel Stiffness = 120 MPa; Poisson = 0.35; Criterion: GranularMaterials CatB Cohesion = 23.1 kPa; Angle of Friction = 32.5 Shear Safety Factor: 4.04
Position: Between Loads/Middle of Layer
Axle Capacity: > 100 million (Effective: > 100 million)
Cum. Damage, Phase Start to End: < 0.01 to 0.03

Thickness = Semi-Infinite;

Vertical Compressive Strain: 219 Microstrain

Sandy Lava Silt

Position: Between Loads/Top of Layer

Stiffness = 54.7 MPa; Poisson = 0.35;

Axle Capacity: 84.98 million (Effective: 84.98 million)

Criterion: Shell Subgrade Rut 85%

Cum. Damage, Phase Start to End: < 0.01 to 0.31

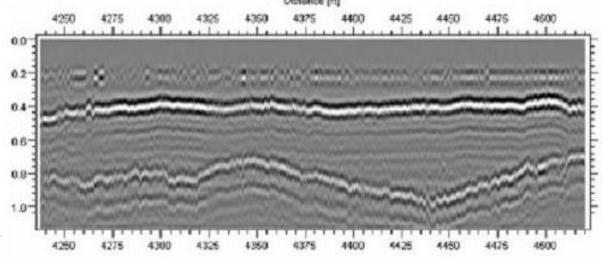
None

Standard Axle Load Details:

Setup: 80 kN Axle, Dual 750 kPa, 350 mm Spacing; Daily Count = 2700; Growth Rate = 4 (%)

Description: 80 kN Axle Dual Tyres. Contact pressure of 750 kPa, 350 mm Spacing

Pavement Notes:



Rehabilitation of RN-20 Santa Cruz - Rio Hondo Stations 126+500 to 136+600 - Crtical Layer Analysis

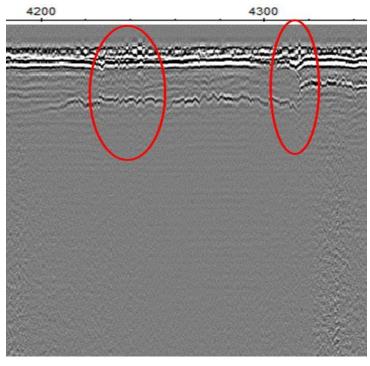
Rubicon Toolbox: LET: Standard Axle Analysis / Ver: 2.4.1 / (Unlicenced)

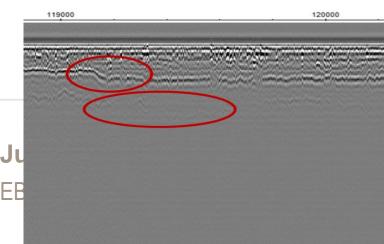
Espesores Efectivos de Pavimento

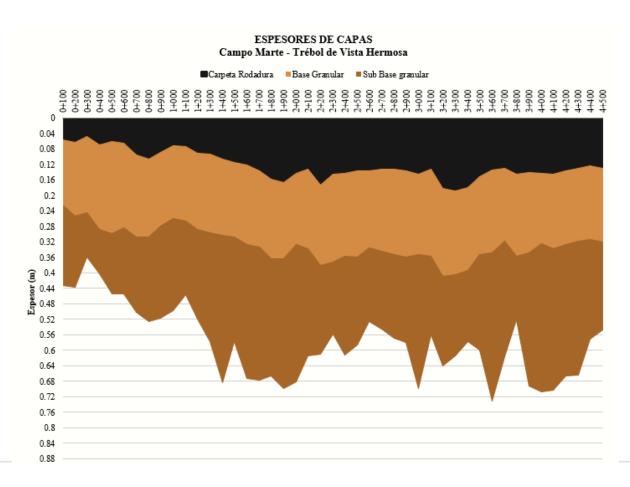
Cortesía Rodrigo Rubio

Juan Pablo Broissin L.

EBM LATAM


Radargram




Georadar (GPR), perfil estratigráfico y detección de anomalías.

GEOSYNTHETICS

Cortesía Rodrigo Rubio

Herramientas de Análisis

ME Cálculo de Deformaciones:

- Tipos de Capa y Espesores
- Propiedades de la Capa
- Carga

Juan Pablo Broissin L.

EBM LATAM

Pavement Situation At Start of Phase 1 of 1

Method: Distinct Phase Calculation Without Adjustment For Incremental Damage

Design Name: [Not Provided]

[No Description Provided]

Detailed view for axle type: 80 kN Axle, Dual 750 kPa, 350 mm Spacing

Total Capacity for All Phases is 25.92 million

Applied Cumulative axles of this type at phase end is 26.28 million

Critical layer for this phase and axle: Layer 2 Phase starts in year 0 and ends in year 17.75

Note: Damages & critical parameters shown are for this axle type only.

Thickness = 150 Millimetres; Continuously Graded Asphalt Stiffness = 2750 MPa; Poisson = 0.4; Criterion: Asphalt Institute AC Fatigue None Max. Horizontal Tensive Strain: 36.2 Microstrain
Position: Load Centrelline/Bottom of Layer
Axle Capacity: >100 million (Effective: >100 million)
Cum. Damage, Phase Start to End: < 0.01 to 0.05

Thickness = 150 Millimetres; Black Base Stiffness = 2750 MPa; Poisson = 0.4; Criterion: Asphalt Institute AC Fatique Max. Horizontal Tensile Strain: 91.2 Microstrain
Position: Between Loads/Bottom of Layer
Axle Capacity: 25.92 million (Effective: 25.92 million)
Cum. Damage, Phase Start to End: < 0.01 to > 1.0

None

Thickness = 150 Millimetres; Sandy Silt with Gravel Stiffness = 200 MPa; Poisson = 0.35; Criterion: Granular Materials CatB Cohesion = 27.7 kPa: Angle of Friction = 38.5 Shear Safety Factor: 3.43
Position: Between Loads/Middle of Layer
Axle Capacity: >100 million (Effective: > 100 million)
Cum. Damage. Phase Start to End: < 0.01 to 0.03

Thickness = 150 Millimetres; Sandy Lava Silt with Gravel Stiffness = 120 MPa; Poisson = 0.35; Criterion: Granular Materials CatB Cohesion = 23.1 kPa; Angle of Friction = 32.5 Shear Safety Factor: 4.04
Position: Between Loads/Middle of Layer
Axle Capacity: > 100 million (Effective: > 100 million)
Cum. Damage, Phase Start to End: < 0.01 to 0.03

Thickness = Semi-Infinite; Sandy Lava Silt Stiffness = 54.7 MPa; Poisson = 0.35; Criterion: Shell Subgrade Rut 85%

Vertical Compressive Strain: 219 Microstrain
Position: Between Loads/Top of Layer
Axle Capacity: 84.98 million (Effective: 84.98 million)
Cum. Damage, Phase Start to End: < 0.01 to 0.31

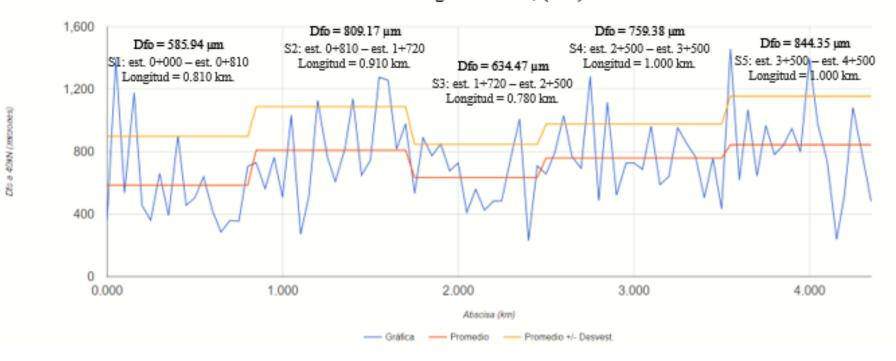
Standard Axle Load Details:

Setup: 80 kN Axle, Dual 750 kPa, 350 mm Spacing; Daily Count = 2700; Growth Rate = 4 (%)

Description: 80 kN Axle Dual Tyres. Contact pressure of 750 kPa, 350 mm Spacing

Pavement Notes:

Rehabilitation of RN-20 Santa Cruz - Rio Hondo Stations 126+500 to 136+600 - Crtical Layer Analysis


Rubicon Toolbox: LET: Standard Axle Analysis / Ver: 2.4.1 / (Unlicenced)

Cortesía Rodrigo Rubio

RESULTADOS DE RETROANÁLISIS DE MÓDULOS CON DEFLECTÓMETRO DE IMPACTO

A. CALZADA 1 (Tránsito en dirección de Paso a Desnivel Guardia de Honor – Trébol de Vista Hermosa)

Deflexión Máxima con una carga de 40 kN, (Dfo) micrómetros

Herramientas de Análisis

Cálculo mediante AASHTO

- Tipos de Capa & Espesores
- Propiedades de Cada Capa
- Cargas
- Coeficiente Estructural 0.6-0.8

Juan Pablo Broissin L.

EBM LATAM

TenCate Traffic Improvement Analysis

Report of Analysis

Project Rio Hondo Project in Guatemala

Date: Oct-19

Input Data

Reinforcement type:

MPG4

Position of Reinforcing:

Bottom of Overlay

Design Axle Load :

80 kN

Pavement Structure

	Thickness [cm]	Layer Coefficient	Subgrade
Overlay	10	0.4	
B/Base	20	0.25	
ABC	6	0.12	
SBC	6	0.08	
SG	31	N/A	CBR 5

Output Data

Overlay life with reinforcing (axles):

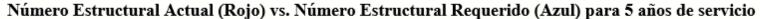
Overlay life without reinforcing (axles):

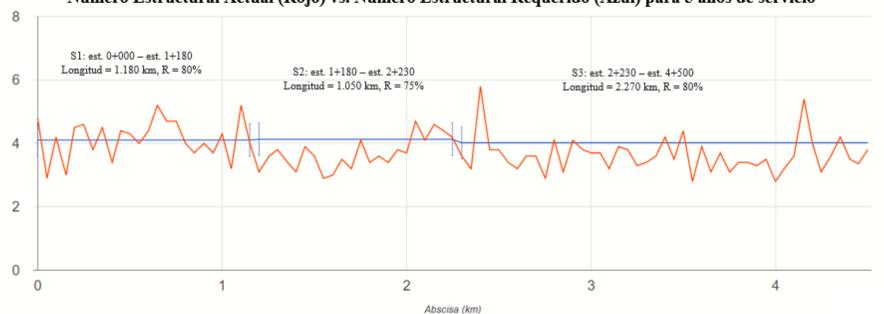
2.65E+07 ESALS 7.89E+06 ESALS

Additional Overlay to Achieve Same Performanc

5 cm

Application Boundary Conditions Have Been Met


- 1. The Asphalt is the critical layer and this drives long term performance
- 2. The MPG4 is located in a tensile zone at a depth of 10cm from the surface.


Diseño de la Estructura con Tecnología

Cortesía Rodrigo Rubio

GEOSYNTHETICS

A. ESTADO ACTUAL:

— SN Requerido — SN Actual

	Intervalo		SN Requerido	Mr (psi)	ESAL	Confiabilidad R%	So	Po	Pt
				6490	4138169	0.75	0.47	4.0	2.0
	0.000-1.150	X	4.106	6600	4138169	0.80	0.47	4.0	2.0
Ju	1.200-2.247	X	4.13	6000	4138169	0.75	0.47	4.0	2.0
EBI	2.299-4.500	X	4.13	6490	4138169	0.80	0.47	4.0	2.0

	Factor carril	0.6
	Factor direccional	1
	ESAL para 1 año	810,763
	ESAL para 2 años	1,656,388
	ESAL para 3 años	2,538,375
	ESAL para 4 años	3,458,288
Ī	ESAL para 5 años	4,417,757
Ī	ESAL para 10 años	9,870,605
	ESAL para 15 años	16,601,067
	ESAL para 20 años	24,908,492


Instalación

GEOSYNTHETICS

Juan Pablo Broissin L.
EBM LATAM

Ligantes Asfálticos Emulsiones

Table 1: Recommended Asphalt Binders for Mirafi® MPM Paving Mat

	PG Grades	Polymer Modified	Typical Use
≒ >	PG 70	SBSPG 76-22	T _{ambient} > 90°F (32° C)
Asphalts for Mirafi® MPM	PG 67	SBSPG 70-22	T _{ambient} > 80°F(27° C)
lie lie	PG 64		Most Common
spł	PG 58		
< ≥	PG 52	HPSPG76	

Colocación Geocompuestos

GEOSYNTHETICS

Juan Pablo Brois
EBM LATAM

CATE NTHETICS

Conducir sobre el Interlayer

EBM LATAM

Colocación del Asfalto

GEOSYNTHETICS

Muchas Gracias
¿Preguntas?

Jp.broissin@tencategeo.com
+52 1 5542631451

